Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1−2x)/3Mn(2−x)/3]O2prepared by a simple combustion method
- 26 March 2004
- journal article
- Published by Royal Society of Chemistry (RSC) in Journal of Materials Chemistry
- Vol. 14 (9), 1424-1429
- https://doi.org/10.1039/b311888f
Abstract
Nanocrystalline Li[NixLi(1−2x)/3Mn(2−x)/3]O2 powders were prepared by a simple combustion method and investigated using X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), scanning electron microscopy (SEM), particle size analysis (PSA), and galvanostatic charge/discharge cycling. According to the XRD analysis, single-phase compounds with a layered structure were obtained for powders with 0 ≤ x ≤ 0.25, while mixtures were obtained for powders with 0.30 ≤ x ≤ 0.50. Rietveld analysis revealed that single-phase Li[NixLi(1−2x)/3Mn(2−x)/3]O2 is basically a layered rock-salt structure in which a small amount of Ni occupies the 3a sites. The initial discharge capacity of a Li/Li[NixLi(1−2x)/3Mn(2−x)/3]O2 cell with x = 0.20 was about 288 mA h g−1, corresponding to about 91% of the theoretical value, when it was cycled in the voltage range of 4.8–2.0 V with a specific current of 20 mA g−1 at 30 °C. As far as we know, charge/discharge cycling on an Li/Li[Ni0.20Li0.20Mn0.60]O2 cell gives the highest discharge capacity of 288 mA h g−1 among the LiMO2-based (M = Co, Ni, and Mn) cathode materials. A very promising factor for high-rate capability applications was an excellent rate capability in continuous cycling at specific currents ranging from 20 mA g−1 to 900 mA g−1, due to the nanocrystalline particle size of 80–200 nm. The origin of the 4.5 V plateau was investigated by means of weight loss measurement and XAS for the charged/discharged electrodes. The weight loss measurement for the charged electrodes gave indirect evidence that the 4.5 V plateau did not originate from the ejection of oxygen. In XAS, the Mn oxidation state of 4+ did not change during the charge/discharge process, and surprisingly the Ni did not further oxidize beyond about 3+.Keywords
This publication has 18 references indexed in Scilit:
- New Iron-Containing Electrode Materials for Lithium Secondary BatteriesETRI Journal, 2003
- Amorphous FePO4 as 3 V cathode material for lithium secondary batteriesJournal of Materials Chemistry, 2002
- Structure and Electrochemistry of Layered Li[Cr[sub x]Li[sub (1/3−x/3)]Mn[sub (2/3−2x/3)]]O[sub 2]Journal of the Electrochemical Society, 2002
- Structure and Electrochemistry of Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] (0≤x≤1/2)Journal of the Electrochemical Society, 2002
- Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3−2x/3]Mn[sub 2/3−x/3]]O[sub 2]Journal of the Electrochemical Society, 2002
- Synthesis, Cation Distribution, and Electrochemical Properties of Fe-Substituted Li[sub 2]MnO[sub 3] as a Novel 4 V Positive Electrode MaterialJournal of the Electrochemical Society, 2002
- Lithium ion cells using a new high capacity cathodeJournal of Power Sources, 2001
- Electrochemical characterization of a new high capacity cathodeJournal of Power Sources, 2001
- Layered Cathode Materials Li[Ni[sub x]Li[sub (1/3−2x/3)]Mn[sub (2/3−x/3)]]O[sub 2] for Lithium-Ion BatteriesElectrochemical and Solid-State Letters, 2001
- Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium BatteriesJournal of the Electrochemical Society, 1997