Computer analysis of thin-walled concrete box beams

Abstract
Three computer programs, written in FORTRAN WATFIV, are developed to analyze straight, monolithically cast, symmetric concrete box beams with one, two, or three cells and side cantilevers over a simple span or over two spans with symmetric mid-span loadings. The analysis, based on Maisel's formulation, is performed in three stages. First, the structure is idealized as a beam and the normal and shear stresses are calculated using the simple bending theory and St-Venant's theory of torsion. The secondary stresses arising from torsional and distortional warping and shear lag are calculated in the second and third stages, respectively. The execution times on an AMDAHL 580 system are 0.02, 0.93, and 0.25 s for the three programs, respectively. The stresses arising in each stage of analysis are then superposed to determine the overall response of the box section to the applied loading. The results are compared with Maisel's hand calculations. Key words: bending, bimoment, box beam, computer analysis, FORTRAN, shear, shear lag, thin-walled section, torsion, torsional and distortional warping.