Abstract
We have investigated the Ca(2+) dependence of vesicular secretion from the soma of dorsal root ganglion (DRG) neurons, which secrete neuropeptides by exocytosis of dense-core vesicles. In patch-clamped somata of rat DRG neurons, we found a depolarization-induced membrane capacitance increase (DeltaC(m)) in the absence of extracellular Ca(2+) and in the presence of a Ca(2+) chelator (BAPTA) in the intracellular solution. Depletion of internal Ca(2+) stores by thapsigargin in the Ca(2+)-free bath also did not block the DeltaC(m), indicating that Ca(2+) release from internal Ca(2+) stores may not have been involved. Furthermore, the Ca(2+)-independent DeltaC(m) was blocked by whole-cell dialysis with tetanus toxin and was accompanied by pulsatile secretion of false transmitters, as detected by amperometric measurements. These results indicate the existence of Ca(2+)-independent but voltage-dependent vesicular secretion (CIVDS) in a mammalian sensory neuron.
Keywords