Turn prediction in proteins using a pattern-matching approach

Abstract
We extend the use of amino acid sequence patterns [Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J. (1983) Biochemistry 22, 4894-4904] to the identification of turns in globular proteins. The approach uses a conservative strategy, combined with a hierarchical search (strongest patterns first) and length-dependent masking, to achieve high accuracy (95%) on a test set of proteins of known structure. Applying the same procedure to homologous families gives a 90% success rate. Straightforward changes are suggested to improve the predictive power. The computer program, written in Lisp, provides a general pattern-recognition language well suited for a number of investigations of protein and nucleic acid sequences.