Induction of Rapid T Cell Activation, Division, and Recirculation by Intratracheal Injection of Dendritic Cells in a TCR Transgenic Model

Abstract
Dendritic cells (DCs) are thought to be responsible for sensitization to inhaled Ag and induction of adaptive immunity in the lung. The characteristics of T cell activation in the lung were studied after transfer of Ag-pulsed bone marrow-derived DCs into the airways of naive mice. Cell division of Ag-specific T cells in vivo was followed in a carboxyfluorescein diacetate succinimidyl ester-labeled cohort of naive moth cytochrome c-reactive TCR transgenic T cells. Our adoptive transfer system was such that transferred DCs were the only cells expressing the MHC molecule required for presentation of cytochrome c to transgenic T cells. Ag-specific T cell activation and proliferation occurred rapidly in the draining lymph nodes of the lung, but not in nondraining lymph nodes or spleen. No bystander activation of non-Ag-specific T cells was induced. Division of Ag-specific T cells was accompanied by transient expression of CD69, while up-regulation of CD44 increased with each cell division. Divided cells had recirculated to nondraining lymph nodes and spleen by day 4 of the response. In vitro restimulation with specific Ag revealed that T cells were primed to proliferate more strongly and to produce higher amounts of cytokines per cell. These data are consistent with the notion that DCs in the lung are extremely efficient in selecting Ag-reactive T cells from a diverse repertoire. The response is initially localized in the mediastinal lymph nodes, but subsequently spreads systemically. This system should allow us to study the early events leading to sensitization to inhaled Ag.