Stable electroluminescence from reverse biased n-type porous silicon–aluminum Schottky junction device

Abstract
We report the realization of a bright and stable electroluminescent Schottky diode based on aluminum-porous silicon junction. White light, visible in normal daylight, is emitted when a reverse bias is applied to the device, promoting the junction breakdown. The device has a fast (100 ns) rise time of the light emission. An excellent stability, tested over more than one month of continuous operation at a high bias level, is achieved by the complete encapsulation of the active porous silicon under a transparent alumina layer. The external power efficiency of light emission is 0.01%.