A distribution for dependent unit vectors
- 1 January 1988
- journal article
- research article
- Published by Taylor & Francis in Communications in Statistics - Theory and Methods
- Vol. 17 (2), 461-483
- https://doi.org/10.1080/03610928808829634
Abstract
A bivariate generalization of the Fisher-von Mises distribution is introduced. The moments and limiting forms of the new distribution are derived. Then procedures to calculate consistent and efficient estimates of the parameters are proposed. New tests of independence are constructed and a numerical example is presented. A special attention is given to instances where the individual samples are highly clustered since they tend to occur often in applications. For such cases simple approximations to the maximum likelihood estimates and reliable small sample tests of independence are provided.Keywords
This publication has 7 references indexed in Scilit:
- Modified Kent's statistics for testing goodness of fit for the Fisher distribution in small concentrated samplesStatistics & Probability Letters, 1986
- Symmetric Distributions for Dependent Unit VectorsThe Annals of Statistics, 1984
- Dependent unit vectorsBiometrika, 1983
- A correlation coefficient for circular dataBiometrika, 1983
- Nonparametric Measures of Angular-Angular AssociationBiometrika, 1982
- A general correlation coefficient for directional data and related regression problemsBiometrika, 1980
- Vector correlationBiometrika, 1979