Transport of Proanthocyanidin Dimer, Trimer, and Polymer Across Monolayers of Human Intestinal Epithelial Caco-2 Cells

Abstract
The gut absorption of proanthocyanidins (PAs) and of the related (+)-catechin monomer was investigated with colonic carcinoma (Caco-2) cells of a human origin, grown in monolayers on permeable filters. Permeability of various radiolabeled PAs differing in their molecular weight was compared with that of the radiolabeled (+)-catechin. No toxicity was observed at PA concentrations up to the physiological concentration of 1 mM. (+)-Catechin and PA dimer and trimer had similar permeability coefficients (Papp = 0.9–2.0 × 10-6 cm s-1) close to that of mannitol, a marker of paracellular transport. Paracellular transport was also indicated by the increase of absorption after reduction of the transepithelial electric resistance through calcium ion removal. In contrast, permeability of a PA polymer with an average polymerization degree of 6 (molecular weight 1,740) was ~10 times lower (Papp = 0.10 ± 0.04 × 10-6 cm s-1). PAs, particularly the most astringent PA polymer, were also adsorbed on the epithelial cells. These results suggest that PA dimers and trimers could be absorbed in vivo and that polymer bioavailability is limited to the gut lumen.