Abstract
40Ar/39Ar mineral age spectra of granitic and metamorphic rocks, in conjunction with existing conventional zircon geochronology, indicate that at least two major late Archean thermal events affected tectonic blocks of the Abitibi Southern Volcanic Zone (SVZ) and the juxtaposed Pontiac Subprovince. The earlier thermal activity (2690–2670 Ma) was accompanied by the intrusion of voluminous syntectonic plutons and caused low-pressure, greenschist-facies metamorphism in the SVZ and intermediate-pressure metamorphism in the Pontiac Subprovince. The second thermal event (2660–2630 Ma) was coeval with the emplacement of syncollisional, S-type garnet–muscovite granites in the Pontiac Subprovince and the higher grade Lacorne block of the Abitibi SVZ, and reset the K–Ar systems in preexisting rocks.Magmatic amphibole from the syntectonic Round Lake batholith (~2695 Ma U–Pb zircon age) of the Abitibi SVZ has a slightly disturbed Ar release spectrum with an upper plateau age of 2669 ± 6 Ma, signifying that the low-grade Round Lake block cooled through 500 °C at a slow rate. Amphiboles in syntectonic batholiths from the higher grade Lacorne block and the Pontiac Subprovince have substantially disturbed Ar release spectra, with high-temperature steps giving apparent ages of 2681 ± 4 to 2679 ± 4 Ma; these overlap zircon ages of 2690–2670 Ma, indicating relatively rapid cooling through the amphibole blocking temperature.Metamorphic rocks (amphibolites) from the Lacorne block and the Pontiac Subprovince contain amphiboles with substantially disturbed 40Ar/39Ar release spectra and higher temperature step ages of 2677 ± 6 to 2670 ± 5 Ma, representing the minimum formation age. Fine-grained muscovite and biotite (180–250 μm) from mica schists also have disturbed Ar release patterns, but much younger apparent ages at high-temperature release steps (2581–2523 Ma for muscovite, 2562–2455 Ma for biotite) than the amphiboles.Coarse-grained muscovites from pegmatites associated with syncollision, S-type garnet–muscovite granites (2644 ± 13 Ma) in the Lacorne block and Pontiac Subprpvince show undisturbed or slightly disturbed Ar release spectra and magmatic δ18Oquartz–muscovite = 1.8–3.5‰, with total integrated ages of 2615 ± 10 to 2594 ± 7 Ma (Lacorne) and 2572 ± 6 Ma (Pontiac), respectively, indicating different uplift rates for the two terranes. Amphiboles (~2680 Ma) from metamorphic rocks in the Lacorne block and Pontiac Subprovince and from the Round Lake batholith are disturbed, whereas coarse-grained muscovites from the pegmatites (2644 ± 13 Ma) are relatively undisturbed. This indicates that the disturbance of the amphiboles may have been caused by a thermal event that preceded or was coeval with the emplacement of the garnet–muscovite granite suite, rather than being a grain-size effect.These results are consistent with a model whereby early subduction of oceanic lithosphere beneath the Abitibi SVZ (2740–2680 Ma), and separately under the Pontiac Subprovince, was responsible for syntectonic batholiths and the first thermal event. Collision with the Abitibi SVZ and local underthrusting of the Pontiac Subprovince at about 2670–2630 Ma caused the second major thermal event and partial melting of the underthrust Pontiac-type metasediments to form the garnet–muscovite granites. Later differential uplift exposed the entire Pontiac Subprovince and the Lacorne block as a tectonic window of underthrust Pontiac in the Abitibi SVZ. Resetting of several isotopic systems, including apparent younger ages of gold mineralization, is probably related to this late collisional, tectonothermal overprinting event. Fluid and (or) thermal events at ≥275 °C influenced the Kirkland Lake – Cadillac fault down to 2513 ± 10 Ma, as indicated by a plateau age of postkinematic biotite in the fault. The fault was intermittently reactivated over a period of 440 Ma, from ~2690 Ma to ≤2250 Ma.