Abstract
If it is believed that neural mechanisms mediating stereoscopic vision may be localized in specific areas of the visual cortex, then it becomes necessary to be able to define these areas adequately. This is no easy matter in the rhesus monkey, an animal close to man, where the cytoarchitecturally uniform prestriate cortex is folded into deep sulci with secondary gyri. One way around this awkward problem is to use the callosal connections of the prestriate cortex as the anatomical landmarks. Callosal connections are restricted to regions at which the vertical meridian is represented. Since the visual fields, including the vertical meridian, are separately represented in each area, each has its own callosal connections. These are of great help in defining some of the boundaries of these areas, since the boundaries often coincide with the representation of the vertical meridian. With the visual areas thus defined anatomically, it becomes relatively easy to assign recordings to particular areas. Studies of binocular interactions in these areas reveal that most cells in all prestriate areas are binocularly driven. Hence, theoretically, all of the prestriate areas are candidates for stereoscopic mechanisms. The degree of binocular interaction varies from cell to cell. At the two extremes are cells which either respond to monocular stimulation only and are inhibited by binocular stimulation or ones which respond to binocular stimulation only. Changing, as opposed to fixed, disparity is signalled by two types of cells. In one category are cells activated in opposite directions for the two eyes. Such cells are always binocularly driven. In the other category are cells, some of which are monocularly activated, that are capable of responding to changing image size. In the monkey, both of these categories of cells have so far been found in the motion area of the superior temporal sulcus only.