Abstract
It is shown that any force model using short-range pair-functional interactions can only have three independent h.c.p. elastic constants. Empirical data show that these elastic properties are nearly realized in a number of materials. A new parametrization of a Finnis-Sinclair-type many-body potential for titanium is presented using these relations. Particular care is taken to describe the anisotropy of the shear constants and the deviation of the c/a lattice parameter ratio from ideal, while maintaining smooth monotonic functions. Energies, stresses and reconstruction modes of various low-index surfaces are calculated and general rules for surface stability are proposed. Various stacking faults on the basal and pyramidal plane are investigated.