Dissociative Mechanism of Thermal Denaturation of Rabbit Skeletal Muscle Glycogen Phosphorylase b

Abstract
The thermal stability of rabbit skeletal muscle glycogen phosphorylase b was characterized using enzymological inactivation studies, differential scanning calorimetry, and analytical ultracentrifugation. The results suggest that denaturation proceeds by the dissociative mechanism, i.e., it includes the step of reversible dissociation of the active dimer into inactive monomers and the following step of irreversible denaturation of the monomer. It was shown that glucose 1-phosphate (substrate), glucose (competitive inhibitor), AMP (allosteric activator), FMN, and glucose 6-phosphate (allosteric inhibitors) had a protective effect. Calorimetric study demonstrates that the cofactor of glycogen phosphorylasepyridoxal 5‘-phosphatestabilizes the enzyme molecule. Partial reactivation of glycogen phosphorylase b preheated at 53 °C occurs after cooling of the enzyme solution to 30 °C. The fact that the rate of reactivation decreases with dilution of the enzyme solution indicates association of inactive monomers into active dimers during renaturation. The allosteric inhibitor FMN enhances the rate of phosphorylase b reactivation.