Physical dissociation of the TCR-CD3 complex accompanies receptor ligation.

Abstract
Recent studies indicate that there may be functional uncoupling of the TCR-CD3 complex and suggest that the TCR-CD3 complex is composed of two parallel signal-transducing units, one made of gamma delta epsilon chains and the other of zeta chains. To elucidate the molecular mechanisms that may explain the functional uncoupling of TCR and CD3, we have analyzed their expression by using flow cytometry as well as immunochemical means both before and after stimulation with anti-TCR-beta, anti-CD3 epsilon, anti-CD2, staphylococcal enterotoxin B, and ionomycin. We present evidence that TCR physically dissociates from CD3 after stimulation of the TCR-CD3 complex. Stimulation with anti-CD3 resulted in down-modulation of TCR within 45 min whereas CD3 epsilon was still expressed on the cell surface as detected by flow cytometry. However, the cell surface expression of TCR and CD3 was not affected when cells were stimulated with anti-TCR-beta under the same conditions. In the case of anti-CD3 treatment of T cells, the TCR down-modulation appeared to be due to the internalization of TCR, as determined by immunoelectron microscopy. Immunochemical analysis of cells after stimulation with either anti-TCR or anti-CD3 mAbs revealed that the overall protein levels of TCR and CD3 were similar. More interestingly, the dissociation of the TCR-CD3 complex was observed with both treatments and occurred in a manner that the TCR and the associated TCR-zeta chain dissociated as a unit from CD3. These results provide the first report of physical dissociation of TCR and CD3 after stimulation through the TCR-CD3 complex. The results also suggest that the signal transduction pathway triggered by TCR may differ from that induced by CD3.