Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes
Open Access
- 1 December 2001
- journal article
- research article
- Published by Oxford University Press (OUP) in Carcinogenesis: Integrative Cancer Research
- Vol. 22 (12), 1987-1992
- https://doi.org/10.1093/carcin/22.12.1987
Abstract
Many dietary isothiocyanates (ITCs) have shown cancer chemoprotective activity in animal models. Isothiocyanates rapidly accumulate in cells of various types as glutathione conjugates, and the total intracellular accumulation levels of ITCs (area under time–concentration curve; AUC) were critical for their Phase 2 enzyme inducer activities in murine hepatoma Hepa 1c1c7 cells. Induction of Phase 2 detoxification enzymes is recognized as a major cellular defense against carcinogens and other toxic agents. In order to further define the importance of intracellular AUC of ITCs in stimulating cellular detoxification functions, we have compared the intracellular AUCs and the inducer activities of four common dietary ITCs, allyl-ITC, benzyl-ITC, phenethyl-ITC and sulforaphane [1-isothiocyanato-(4R,S)-(methylsulfinyl)butane], in mouse skin papilloma (PE) cells. When PE cells were incubated with 5 μM of each ITC for 24 h, significant elevations of glutathione content (1.8–4.3-fold), quinone reductase activity (2.1–5.4-fold) and glutathione transferase activity (0.8–1.5-fold) were observed. These elevations were closely correlated with the AUCs of the ITCs. Increasing intracellular AUC of a weaker ITC by multiple dosing also increased its inducer activity. Further studies revealed that the AUC-dependent elevation of the above elements were mediated by the DNA regulatory element EpRE/ARE. In human HepG2 cells, which were stably transfected with a reporter construct under EpRE/ARE control, the intracellular AUC of the four ITCs closely correlated with the levels of reporter gene product (green fluorescent protein). These results showed that cellular accumulation levels of ITCs determine their activity in inducing cellular detoxification capacity and suggested that the intracellular AUC might be a valuable biomarker of the Phase 2 enzyme inducer activity of ITCs.Keywords
This publication has 22 references indexed in Scilit:
- Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanatesCarcinogenesis: Integrative Cancer Research, 2001
- The chemical diversity and distribution of glucosinolates and isothiocyanates among plantsPhytochemistry, 2001
- Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cellsCarcinogenesis: Integrative Cancer Research, 2000
- Chemoprevention by inducers of carcinogen detoxication enzymes.Environmental Health Perspectives, 1997
- Chemoprevention by isothiocyanatesJournal of Cellular Biochemistry, 1995
- Antioxidant response elementBiochemical Pharmacology, 1994
- Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates.Proceedings of the National Academy of Sciences, 1994
- Design and synthesis of bifunctional isothiocyanate analogs of sulforaphane: correlation between structure and potency as inducers of anticarcinogenic detoxication enzymesJournal of Medicinal Chemistry, 1994
- A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure.Proceedings of the National Academy of Sciences, 1992
- Glucosinolates and their breakdown products in food and food plantsC R C Critical Reviews in Food Science and Nutrition, 1983