Selective Alterations of White Matter Associated with Visuospatial and Sensorimotor Dysfunction in Turner Syndrome

Abstract
Turner syndrome (TS) is a neurogenetic disorder characterized by impaired spatial, numerical, and motor functioning but relatively spared verbal ability. Results from previous neuroimaging studies suggest that gray matter alterations in parietal and frontal regions may contribute to atypical visuospatial and executive functioning in TS. Recent findings in TS also indicate variations in the shape of parietal gyri and white matter microstructural anomalies of the temporal lobe. Diffusion tensor imaging and structural imaging methods were used to determine whether 10 females with TS and 10 age- and gender-matched control subjects exhibited differences in fractional anisotropy, white matter density, and local brain shape. Relative to controls, females with TS had lower fractional anisotropy (FA) values in the deep white matter of the left parietal-occipital region extending anteriorly along the superior longitudinal fasciculus into the deep white matter of the frontal lobe. In addition, decreased FA values were located bilaterally in the internal capsule extending into the globus pallidus and in the right prefrontal region. Voxel-based morphometry (VBM) analysis showed corresponding white matter density differences in the internal capsules and left centrum semiovale. Tensor-based morphometry analysis indicated that the FA and VBM results were not attributable to differences in the local shape of brain structures. Compared with controls, females with TS had increases in FA values and white matter density in language-related areas of the inferior parietal and temporal lobes. These complementary analyses provide evidence for alterations in white matter pathways that subserve affected and preserved cognitive functions in TS.