On the Radiation of Sound from an Unflanged Circular Pipe

Abstract
A rigorous and explicit solution is obtained for the problem of sound radiation from an unflanged circular pipe, assuming axially symmetric excitation. The solution is valid throughout the wave-length range of dominant mode (plane wave) propagation in the pipe. The reflection coefficient for the velocity potential within the pipe and the power-gain function, embodying the characteristics of the radiation pattern, are evaluated numerically. The absorption cross section of the pipe for a plane wave incident from external space, and the gain function for this direction, are found to satisfy a reciprocity relation. In particular, the absorption cross section for normal incidence is just the area of the mouth. At low frequencies of vibration, the velocity potential within the pipe is the same as if the pipe were lengthened by a certain fraction of the radius and the open end behaved as a loop. The exact value of the end correction turns out to be 0.6133.