Abstract
The dependence of DNA mobility anomalies on gel pore size has been studied in polyacrylamide gels with a wide variety of compositions, using molecular weight ladders containing multiple copies of normal (12B) and anomalously slowly migrating (12A) 147‐base pair restriction fragments from plasmid pBR322 as the migrating probe molecules. If the gel pore size is increased by decreasing the total acrylamide concentration (%T) at constant cross‐linker ratio (%C), the usual method of increasing gel pore size, the mobility anomalies decrease with increasing gel pore radius as though the 12A multimers were retarded by a sieving mechanism. However, the decrease in the mobility anomalies is independent of whether the apparent gel pore radius is larger or smaller than the DNA radius of gyration, suggesting that gel pore size is not the controlling variable. If the acrylamide concentration is held constant and the gel pore size is increased by decreasing %C at constant %T, the mobility anomalies of the largest 12A multimers (6 mers and higher) decrease with increasing gel pore radius, because of sieving effects, until the effective gel pore radius becomes approximately equal to the DNA radius of gyration, after which the mobility anomalies level off and become independent of gel pore size. The mobility anomalies exhibited by 5‐mers and smaller multimers of fragment 12A are independent of gel pore radius in all gels with constant %T. Similar results are observed with a molecular weight ladder containing phased A‐tracts from the kinetoplast bending locus. Since the anomalous electrophoretic mobilities depend primarily on the total acrylamide concentration in the gel, and not on the apparent gel pore radius, increases in the magnitude of the mobility anomalies with increasing gel concentration (and decreasing gel pore radius) cannot be taken as evidence for DNA curvature.