In vitro antitumor activity of 2'-deoxy-5-fluorouridine-monoclonal antibody conjugates

Abstract
5-Fluorouracil (5-FU) is an anticancer drug used in patients for the treatment of gastric and breast cancer and used either alone or in combination with methotrexate is one of the few drugs with some effect on colon cancer. 2'-Deoxy-5-fluorouridine (5-FUdr) (1) is an analogue based on 5-FU and can be covalently linked to a murine anti-Ly-2.1 monoclonal antibody (mAb) with the active ester derivative of 2'-deoxy-5-fluoro-3'-O-(carboxypropanoyl)uridine (5-FUdr-succ) (4). Such immunoconjugates can contain up to 42 residues of drug, although the most antibody activity was retained when substitution ratios were between 10 and 25 molecules of drug to mAb. In a cytotoxicity assay, 50% inhibition of [3H]deoxyuridine incorporation (IC50) with a murine Ly-2.1+ve thymoma cell line was 6 nM for 5-FUdr-anti-Ly-2.1, which is 12-fold more than that for free 5-FUdr (IC50 = 0.51 nM) but similar to that of 5-FUdr-succ (IC50 = 5.2 nM). The 5-FUdr-monoclonal antibody conjugates (5-FUdr-mAb) were 100-fold more active on the Ly-2.1+ve E3 cell line than on the Ly-2.1-ve BW5147 OU- cell line. The high in vitro activity and specificity of 5-FUdr-MoAb conjugates indicates that potent in vivo activity of these conjugates should be expected.