Abstract
The movement at a marginal location on the Ward Hunt Ice Shelf, northern Ellesmere Island, was determined by repeated survey measurements with theodolite and geodimeter. The purpose and duration of the field work, and reduction of the observational data are described, and the resulting mean ice velocity of 0.53 m year-1is discussed. Strain-rates of a 1 km by 1 km deformation figure are determined. The parametersnandBof Glen’s power flow law are determined by using the equations given by Nye and Weertman. The results are compared with experimental data. Computed ice stresses show that the “ridge-and-trough" structure on the ice shelf surface is not originated by internal ice forces. The elevations of all survey markers have been determined from vertical-angle measurements, and the peculiarities of atmospheric refraction in near-surface layers are discussed.