Incentives and Redistribution in Homogeneous Bike-Sharing Systems with Stations of Finite Capacity

Abstract
Bike-sharing systems are becoming important for urban transportation. In such systems, users arrive at a station, take a bike and use it for a while, then return it to another station of their choice. Each station has a finite capacity: it cannot host more bikes than its capacity. We propose a stochastic model of an homogeneous bike-sharing system and study the effect of users random choices on the number of problematic stations, i.e., stations that, at a given time, have no bikes available or no available spots for bikes to be returned to. We quantify the influence of the station capacities, and we compute the fleet size that is optimal in terms of minimizing the proportion of problematic stations. Even in a homogeneous city, the system exhibits a poor performance: the minimal proportion of problematic stations is of the order of (but not lower than) the inverse of the capacity. We show that simple incentives, such as suggesting users to return to the least loaded station among two stations, improve the situation by an exponential factor. We also compute the rate at which bikes have to be redistributed by trucks to insure a given quality of service. This rate is of the order of the inverse of the station capacity. For all cases considered, the fleet size that corresponds to the best performance is half of the total number of spots plus a few more, the value of the few more can be computed in closed-form as a function of the system parameters. It corresponds to the average number of bikes in circulation.