Differential Expression ofIAChannel Subunits Kv4.2 and Kv4.3 in Mouse Visual Cortical Neurons and Synapses
Open Access
- 22 November 2006
- journal article
- research article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 26 (47), 12274-12282
- https://doi.org/10.1523/jneurosci.2599-06.2006
Abstract
In cortical neurons, pore-forming α-subunits of the Kv4 subfamily underlie the fast transient outward K+current (IA). Considerable evidence has accumulated demonstrating specific roles forIAchannels in the generation of individual action potentials and in the regulation of repetitive firing. AlthoughIAchannels are thought to play a role in synaptic processing, little is known about the cell type- and synapse-specific distribution of these channels in cortical circuits. Here, we used immunolabeling with specific antibodies against Kv4.2 and Kv4.3, in combination with GABA immunogold staining, to determine the cellular, subcellular, and synaptic localization of Kv4 channels in the primary visual cortex of mice, in which subsets of pyramidal cells express yellow fluorescent protein. The results show that both Kv4.2 and Kv4.3 are concentrated in layer 1, the bottom of layer 2/3, and in layers 4 and 5/6. In all layers, clusters of Kv4.2 and Kv4.3 immunoreactivity are evident in the membranes of the somata, dendrites, and spines of pyramidal cells and GABAergic interneurons. Electron microscopic analyses revealed that Kv4.2 and Kv4.3 clusters in pyramidal cells and interneurons are excluded from putative excitatory synapses, whereas postsynaptic membranes at GABAergic synapses often contain Kv4.2 and Kv4.3. The presence of Kv4 channels at GABAergic synapses would be expected to weaken inhibition during dendritic depolarization by backpropagating action potentials. The extrasynaptic localization of Kv4 channels near excitatory synapses, in contrast, should stabilize synaptic excitation during dendritic depolarization. Thus, the synapse-specific distribution of Kv4 channels functions to optimize dendritic excitation and the association between presynaptic and postsynaptic activity.Keywords
This publication has 42 references indexed in Scilit:
- Novel Subcellular Distribution Pattern of A-Type K+Channels on Neuronal SurfaceJournal of Neuroscience, 2006
- Functional Role of the Fast Transient Outward K+CurrentIAin Pyramidal Neurons in (Rat) Primary Visual CortexJournal of Neuroscience, 2005
- Plasticity of dendritic excitabilityJournal of Neurobiology, 2005
- Rapid Arrival and Integration of Ascending Sensory Information in Layer 1 Nonpyramidal Neurons and Tuft Dendrites of Layer 5 Pyramidal Neurons of the NeocortexJournal of Neuroscience, 2004
- Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagationThe Journal of Physiology, 2003
- Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neuronsThe Journal of Physiology, 2001
- Input-Specific Immunolocalization of Differentially Phosphorylated Kv4.2 in the Mouse BrainLearning & Memory, 2000
- Word of Mouth: January-February 1999Word of Mouth, 1999
- Distribution of GABAergic Elements Postsynaptic to Ventroposteromedial Thalamic Projections in Layer IV of Rat Barrel CortexEuropean Journal of Neuroscience, 1996
- The Cerebral Cortex of the Mouse (A First Contribution—The “Acoustic” Cortex)Somatosensory & Motor Research, 1992