Bacterial cholesterol oxidases are able to act as flavoprotein‐linked ketosteroid monooxygenases that catalyse the hydroxylation of cholesterol to 4‐cholesten‐6‐ol‐3‐one

Abstract
A new metabolite of cholesterol was found in reaction mixtures containing cholesterol or 4-cholesten-3-one as a substrate and extra- or intracellular protein extracts from recombinant Streptomyces lividans and Escherichia coli strains carrying cloned DNA fragments of Streptomyces sp. SA-COO, the producer of Streptomyces cholesterol oxidase. The new metabolite was identified as 4-cholesten-6-ol-3-one based on comparisons of its high-performance liquid chromatography, gas chromatography/mass spectrometry, infrared and proton-nuclear magnetic resonance spectra with those of an authentic standard. Genetic analyses showed that the enzyme responsible for the production of 4-cholesten-6-ol-3-one is cholesterol oxidase encoded by the choA gene. Commercially purified cholesterol oxidase (EC 1.1.3.6.) of a Streptomyces sp., as well as of Brevibacterium sterolicum and a Pseudomonas sp., and a highly purified recombinant Streptomyces cholesterol oxidase were also able to catalyse the 6-hydroxylation reaction. Hydrogen peroxide accumulating in the reaction mixtures as a consequence of the 3β-hydroxysteroid oxidase activity of the enzyme was shown to have no role in the formation of the 6-hydroxylated derivative. We propose a possible scheme of a branched reaction pathway for the concurrent formation of 4-cholesten-3-one and 4-chotesten-6-ol-3-one by cholesterol oxidase, and the observed differences in the rate of formation of the 6-hydroxy-ketosteroid by the enzymes of different bacterial sources are also discussed.