Fluorescence intensity resolution in flow systems.

Abstract
The factor which can limit fluorescence intensity resolution in a flow cytometer of the type in which cells pass perpendicularly through a focussed laser beam depends on signal intensity. For the brightest sources (e.g. fluorescent DNA stains), the coefficient of variation (CV) is limited in our system to around 3% by stream hydrodynamics, unstable illumination intensity, nonstoichiometric staining, etc. The weakest detectable sources (e.g. fluorescent cell-surface labels) are limited in coefficient of variation by shot noise in the photomultiplier due to constant background light levels. Finally, over a fairly wide brightness range between these extremes, resolution is determined primarily by photoelectron statistical variation on the signal itself (i.e. "photon statistics"). Thus photon collection and detection efficiency (solid angle, barrier filter passband, detector quantum efficiency) become of primary importance.