Ligand‐Stabilized and Atomically Precise Gold Nanocluster Catalysis: A Case Study for Correlating Fundamental Electronic Properties with Catalysis

Abstract
We present results from our investigations into correlating the styrene‐oxidation catalysis of atomically precise mixed‐ligand biicosahedral‐structure [Au25(PPh3)10(SC12H25)5Cl2]2+ (Au25bi) and thiol‐stabilized icosahedral core–shell‐structure [Au25(SCH2CH2Ph)18] (Au25i) clusters with their electronic and atomic structure by using a combination of synchrotron radiation‐based X‐ray absorption fine‐structure spectroscopy (XAFS) and ultraviolet photoemission spectroscopy (UPS). Compared to bulk Au, XAFS revealed low Au–Au coordination, AuAu bond contraction and higher d‐band vacancies in both the ligand‐stabilized Au clusters. The ligands were found not only to act as colloidal stabilizers, but also as d‐band electron acceptor for Au atoms. Au25bi clusters have a higher first‐shell Au coordination number than Au25i, whereas Au25bi and Au25i clusters have the same number of Au atoms. The UPS revealed a trend of narrower d‐band width, with apparent d‐band spin–orbit splitting and higher binding energy of d‐band center position for Au25bi and Au25i. We propose that the differences in their d‐band unoccupied state population are likely to be responsible for differences in their catalytic activity and selectivity. The findings reported herein help to understand the catalysis of atomically precise ligand‐stabilized metal clusters by correlating their atomic or electronic properties with catalytic activity.
Funding Information
  • Center for Atomic Level Catalyst Design, an Energy Frontier Research Center
  • U.S. Department of Energy (DE-SC0001058)
  • Department of Energy
  • U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-AC02-06CH11357)
  • Institute for Atom-efficient Chemical Transformations (IACT)
  • Energy Frontier Re-search Center