ERK1/2-Dependent Contractile Protein Expression in Vascular Smooth Muscle Cells

Abstract
In vivo, vascular smooth muscle (VSM) cells change their contractile phenotype toward a more proliferative phenotype during the pathogenesis of vascular diseases. Because these dedifferentiated VSM cells may gradually regain contractile functions, we aimed to identify signaling pathways that result in an increased expression of contractile proteins in VSM cells. In vitro, serum and thrombin induced a reversible upregulation of smooth muscle myosin heavy-chain (SM-MHC) in cultured neonatal rat VSM cells. Cotransfection of a SM-MHC–promoter chloramphenicol acetyltransferase–construct with dominant-negative N17Ras or N17Raf or treatment with the mitogen-activated/ERK-activating kinase (MEK) inhibitor PD 98059 concentration dependently decreased the serum- or thrombin-induced SM-MHC promoter activity. Consistently, the serum- or thrombin-induced phosphorylation of MEK and extracellular signal-regulated kinase 1/2 (ERK1/2) coincided with a MEK-dependent nuclear accumulation of phosphorylated ERK1/2 and subsequ...