Electronic structure and dimerization of a single monatomic gold wire
Preprint
- 13 April 1999
Abstract
The electronic structure of a single monatomic gold wire is presented for the first time. It has been obtained with state-of-the-art ab-initio full-potential density-functional (DFT) LMTO (linearized muffin-tin orbital) calculations taking into account relativistic effects. For stretched structures in the experimentally accessible range the conduction band is exactly half-filled, whereas the band structures are more complex for the optimized structure. By studying the total energy as a function of unit-cell length and of a possible bond-length alternation we find that the system can lower its total energy by letting the bond lengths alternate leading to a structure containing separated dimers with bond lengths of about 2.5 \AA, largely independent of the stretching. However, first for fairly large unit cells (above roughly 7 \AA), is the total-energy gain upon this dimerization comparable with the energy costs upon stretching. We propose that this together with band-structure effects is the reason for the larger interatomic distances observed in recent experiments. We find also that although spin-orbit couplings lead to significant effects on the band structure, the overall conclusions are not altered, and that finite Au_2, Au_4, and Au_6 chains possess electronic properties very similar to those of the infinite chain.All Related Versions
- Version 1, 1999-04-13, ArXiv
- Published version: Chemical Physics Letters, 323 (3-4), 293.