Estimation of twig xylem water potential in young Douglas-fir trees

Abstract
Methodology, based on water flow theory, is described which can be used to estimate twig xylem water potential for 10–15 m tall Douglas-fir (Pseudotsugamenziesii) (Mirb.) Franco) trees. Using pressure chamber measurements, values of needle xylem water pressure potential were found to be similar to twig xylem water pressure potential. For root zone soil water potential (ψs) > −0.4 MPa, measured predawn total twig xylem water potential (ψTtx) of these Douglas-fir trees was significantly less than ψs. A transpiration rate (E) dependent single soil to twig liquid resistance (Rst) accounted for the difference between predawn ψTtx and ψs. For ψs > −0.4 MPa, during the daytime when E was high, Rst could be described by a logarithmic function of ψs. The effect of capacitance on twig xylem water potential (ψtx) was small. A model incorporating the transpiration dependent Rst accurately estimated the course of ψtx on a clear day when ψs was −0.04 MPa.