Experimental test of the optical Bloch equations for solids using free-induction decay
- 1 April 1989
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 39 (8), 3992-3997
- https://doi.org/10.1103/physreva.39.3992
Abstract
Recent studies by DeVoe and Brewer [Phys. Rev. Lett. 50, 1269 (1983)] have shown that the conventional optical Bloch equations markedly fail to describe the optical saturation behavior of the line in the solid :. In this paper we extend these studies to another solid, ruby, using free-induction-decay observations obtained by pulse excitation of the line at 693.4 nm with an ultranarrow-linewidth dye laser. Comparison of the results with Gauss-Markov and random-telegraph-dephasing theories shows approximate agreement for a fluctuation correlation time =, the dephasing time. This result is remarkably similar to that obtained for :. However, for theoretical and experimental reasons, we conclude that the theories do not consistently explain the current as well as other data. A qualitative discussion of another dephasing model is given.
Keywords
This publication has 22 references indexed in Scilit:
- Validity conditions for the optical Bloch equationsJournal of the Optical Society of America B, 1986
- Modified optical Bloch equations for solidsPhysical Review A, 1985
- Random-telegraph-signal theory of optical resonance relaxation with applications to free induction decayPhysical Review A, 1985
- Relaxation terms for strong-field optical Bloch equationsJournal of the Optical Society of America B, 1984
- Microscopic theory of optical line narrowing of a coherently driven solidPhysical Review A, 1984
- Free-induction decay in a fluctuating two-level systemOptics Communications, 1984
- Optical Bloch Equations for Low-Temperature SolidsPhysical Review Letters, 1984
- Stochastic Theory of Coherent Optical TransientsJournal of the Physics Society Japan, 1983
- Experimental Test of the Optical Bloch Equations for SolidsPhysical Review Letters, 1983
- Monte Carlo theory of optical dephasing in La:Physical Review B, 1981