Because a natural entity “species” cannot be recognized as a group of strains that is genetically well separated from its phylogenetic neighbors, a pragmatic approach was taken to define a species by a polyphasic approach (L. G. Wayne, D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper, Int. J. Syst. Bacteriol. 37:463-464, 1987), in which a DNA reassociation value of about 70% plays a dominant role. With the establishment of rapid sequence analysis of 16S rRNA and the recognition of its potential to determine the phylogenetic position of any prokaryotic organism, the role of 16S rRNA similarities in the present species definition in bacteriology needs to be clarified. Comparative studies clearly reveal the limitations of the sequence analysis of this conserved gene and gene product in the determination of relationships at the strain level for which DNA-DNA reassociation experiments still constitute the superior method. Since today the primary structure of 16S rRNA is easier to determine than hybridization between DNA strands, the strength of the sequence analysis is to recognize the level at which DNA pairing studies need to be performed, which certainly applies to similarities of 97% and higher.