Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): common relationship to diminished cell adherence.

Abstract
Investigations of polymorphonuclear leukocyte (PMN) function were performed in a 5-yr-old white female with delayed umbilical cord separation, impaired pus formation, and a severe defect of PMN chemotaxis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated an almost total deficiency of a high molecular weight glycoprotein(s) (GP138) in the granule and membrane fractions of the patient's cells, and NaB3H4-galactose oxidase labeling demonstrated the absence of a major glycoprotein complex on the surface of her PMNs. Monoclonal antibodies (MAb) were employed in flow cytometry experiments to demonstrate that two previously characterized glycoproteins (Mo1 and LFA1) were undetectable on the surface of the patient's PMNs and monocytes. Immunoprecipitation of 125I-labeled patient cells with subunit specific MAbs confirmed that the alpha-subunits of Mo1 (155 kD) and LFA1 (177 kD) and their common beta-subunit (94 kD) were totally deficient. Functional analyses of patient PMNs demonstrated severe impairment of adherence- and adhesion-dependent cell functions including spreading, aggregation, orientation in chemotactic gradients, antibody-dependent cellular cytotoxicity, and phagocytosis of particles (Oil-Red-0-paraffin, zymosan) selectively opsonized with C3-derived ligands. Patient PMNs demonstrated a normal capacity to rosette with IgG or C3b-coated sheep erythrocytes, but rosette formation with C3bi-coated erythrocytes was profoundly diminished. Adhesion-independent functions including shape change, N-formyl-methionyl-leucyl-3H-phenylalanine binding, and O-2 generation or secretion elicited by soluble stimuli were normal. Membrane fluidity, surface charge, and microtubule assembly were also normal. These findings provide new evidence that critical PMN surface glycoproteins are required to facilitate multiple adhesion-dependent cellular functions of the inflammatory response.