Early bacterial clearance from murine lungs. Species-dependent phagocyte response.

Abstract
Two sets of phagocytic cells are available to defend the lung against inhaled bacteria. Both resident alveolar macrophages and granulocytes from the circulation have been observed in pulmonary air spaces after the deposition of bacteria; their functional roles, however, have been defined. We rendered mice selectively granulocytopenic with heterologous antiserum in order to ascertain the relative contributions of these two groups of cells in intrapulmonary bacterial killing. The clearance of Staphylococcus aureus was unimpaired in granulocytopenic animals, confirming the primary role of the alveolar macrophages in the killing of these organisms. In contrast, granulocytopenic animals cleared only 10.0+/-7.0% of an inoculum of Klebsiella pneumoniae compared with 33.0+/-4.0% clearance in normal animals (P < 0.02), and Pseudomonas aeruginosa proliferated to 513% of baseline levels in granulocytopenic animals, whereas normal mice cleared 26.8+/-10.6% of the inoculum. These findings indicate that circulating granulocytes play a major role in the clearance of the latter two organisms. This variation in cellular response to different bacterial species suggests that the defense of the lung against pathogenic bacteria is more complex than has been previously assumed.