Spintronics and pseudospintronics in graphene and topological insulators

Abstract
The two-dimensional electron systems in graphene and in topological insulators are described by massless Dirac equations. Although the two systems have similar Hamiltonians, they are polar opposites in terms of spin-orbit coupling strength. We briefly review the status of efforts to achieve long spin-relaxation times in graphene with its weak spin-orbit coupling, and to achieve large current-induced spin polarizations in topological-insulator surface states that have strong spin-orbit coupling. We also comment on differences between the magnetic responses and dilute-moment coupling properties of the two systems, and on the pseudospin analogue of giant magnetoresistance in bilayer graphene.
All Related Versions

This publication has 90 references indexed in Scilit: