cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells
- 1 March 2010
- journal article
- research article
- Published by American Physiological Society in American Journal of Physiology-Renal Physiology
- Vol. 298 (3), F643-F654
- https://doi.org/10.1152/ajprenal.00584.2009
Abstract
Kidney proton-secreting A-intercalated cells (A-IC) respond to systemic acidosis by accumulating the vacuolar ATPase (V-ATPase) in their apical membrane and by increasing the length and number of apical microvilli. We show here that the cell-permeant cAMP analog CPT-cAMP, infused in vivo, results in an almost twofold increase in apical V-ATPase accumulation in AE1-positive A-IC within 15 min and that these cells develop an extensive array of apical microvilli compared with controls. In contrast, no significant change in V-ATPase distribution could be detected by immunocytochemistry in B-intercalated cells at the acute time point examined. To show a direct effect of cAMP on A-IC, we prepared cell suspensions from the medulla of transgenic mice expressing EGFP in IC (driven by the B1-subunit promoter of the V-ATPase) and exposed them to cAMP analogs in vitro. Three-dimensional reconstructions of confocal images revealed that cAMP induced a time-dependent growth of apical microvilli, starting within minutes after addition. This effect was blocked by the PKA inhibitor myristoylated PKI. These morphological changes were paralleled by increased cAMP-mediated proton extrusion (pHi recovery) by A-IC in outer medullary collecting ducts measured using the ratiometric probe BCECF. These results, and our prior data showing that the bicarbonate-stimulated soluble adenylyl cyclase (sAC) is highly expressed in kidney intercalated cells, support the idea that cAMP generated either by sAC, or by activation of other signaling pathways, is part of the signal transduction mechanism involved in acid-base sensing and V-ATPase membrane trafficking in kidney intercalated cells.Keywords
This publication has 72 references indexed in Scilit:
- Regulation of the V-ATPase in kidney epithelial cells: dual role in acid–base homeostasis and vesicle traffickingJournal of Experimental Biology, 2009
- AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cellsAmerican Journal of Physiology-Cell Physiology, 2009
- Transepithelial Projections from Basal Cells Are Luminal Sensors in Pseudostratified EpitheliaCell, 2008
- Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cellsAmerican Journal of Physiology-Cell Physiology, 2008
- Angiotensin II Activates H+-ATPase in Type A Intercalated CellsJournal of the American Society of Nephrology, 2008
- Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cellsAmerican Journal of Physiology-Renal Physiology, 2008
- Molecular Details of cAMP Generation in Mammalian Cells: A Tale of Two SystemsJournal of Molecular Biology, 2006
- Proton-sensing G-protein-coupled receptorsNature, 2003
- Soluble Adenylyl Cyclase as an Evolutionarily Conserved Bicarbonate SensorScience, 2000
- Regulation of Transepithelial H+ Transport by Exocytosis and EndocytosisAnnual Review of Physiology, 1986