Abstract
A simple formula of the dynamic spectral width of a directly modulated dynamic-single-mode (DSM) laser, and the related maximum transmission bandwidth of a single-mode fiber limited by chromatic dispersion are theoretically given. The dynamic spectral width of a DSM laser is determined by the modulated optical shape and the linewidth enhancement factor α. The spectral width caused by the dynamic wavelength shift is shown to be larger by (1 + \alpha^{2})1/2than that caused by the sideband of the signal of the intensity modulation. Furthermore, the maximum transmission bandwidth of a conventional single-mode fiber with a DSM laser is expressed by using the parameter α and the chromatic dispersion of the fiber. The product of the maximum bit rate and the square root of the fiber length at the wavelength of 1.55 μm is estimated to be about 25 Gbit/s . km1/2.