Model experiments on the evolution and stability of ice streams

Abstract
A simple model is developed based on the notion that on active ice streams the resistance to flow is partitioned between basal drag and lateral drag. The relative roles of these sources of resistance is determined by a friction parameter that effectively describes the strength of the bed under the ice stream. Reduction in the basal strength is caused by meltwater production, taken proportional to the product of basal drag and ice speed. The width of the ice stream is governed by the balance between entrainment or erosion of ice from the slow-moving inter-stream ridges and advection from the ridges into the ice stream. Entrainment of ridge ice is parameterized as a function of the shear stress at the lateral margins, in one case proportional to the lateral shear stress and in the second case scaled to ice-stream width. In the first formulation, the model rapidly becomes unstable but, using the second formulation, a steady state is reached with lateral drag providing all or most of the resistance to flow. The results point to the great importance of achieving an understanding of entrainment. With the second model and a wide range of parameter values, there is no cyclic behavior, with rapid flow being followed by a quiescent phase.