In Vivo Voltammetric Study of 6‐Hydroxydopamine‐Induced Neuronal Degradation

Abstract
Freely moving rats were injected intraventricularly with 200 .mu.g of 6-hydroxydopamine (6-OHDA) and examined for transport of this substance to the striatum, degradation of dopamine (DA) neurons, and functional recovery through microcomputer-controlled in vivo voltammetry. Approximately 6 min after the injection, 6-OHDA began to appear in the extracellular fluid of the contralateral striatum. It increased linearly and began to decrease exponentially with the termination of the injection. Two hours after the injecton with 6-OHDA, a peak began to appear at the same potential as the peak of DA in the differential pulse voltammogram. It persisted for approximately 3 days. When the rats were injected intraperitoneally with L-3,4-dihydroxyphenylalanine (L-Dopa), the conversion of L-Dopa to DA was not found 1 week after the 6-OHDA injection, but was clearly recognized 5 months after the injection. When the rats were examined for behavioral changes arising from the L-Dopa injection, they were found to be clearly less hyperactive 5 months after the 6-OHDA injection than 1 week after.