Hyperpolarization of a Barnacle Photoreceptor Membrane following Illumination

Abstract
Membrane potential changes following illumination of a photoreceptor cell in the lateral ocellus of a barnacle (Balanus eburneus) were studied by means of intracellular recording and polarization techniques. Illumination produces a depolarizing response. When the illumination is terminated, the membrane potential temporarily becomes more negative than the resting potential prior to illumination. Although the amplitude of this postillumination hyperpolarization depends upon the intensity as well as the duration of the light pulse, the time course is fairly constant. The hyperpolarization is not associated with any significant membrane conductance increase and is abolished by 10-5 M ouabain. It diminishes when the external Na or K ions are removed. An intracellular injection of Na ions produces a hyperpolarization similar to that following illumination. It is suggested that the postillumination hyperpolarization is produced by an electrogenic Na pump which is activated by the Na influx during illumination.