An automated technique for measuring the recovery cycle of human nerves

Abstract
Action potentials conducted along a nerve fiber leave in their wake consistent alterations in excitability, including the absolute and relative refractory periods, a supernormal period (SNP) and a late phase of subnormality. We describe an automated technique for reliably determining the recovery cycle of human sensory nerve fibers bydelivering series of paried stimuli and precisely measuring the latencies (to within 0.5 μsec) of the compound action potentials. Therecovery cycle can be compiled from the differences in latency between the two responses of a pair. Consistent changes in conduction velocity are demonstrated during each phase of altered excitability. Possible physiological mechanisms underlying the recovery cycle are discussed, and the effects of cold, ischemia, prior tetanization and subcutaneous lidocaine are presented. This technique may prove to be a useful and more sensitive tool for the study of certain disorders of peripheral nerves.