Modular Premotor Drives and Unit Bursts as Primitives for Frog Motor Behaviors
Open Access
- 2 June 2004
- journal article
- research article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 24 (22), 5269-5282
- https://doi.org/10.1523/jneurosci.5626-03.2004
Abstract
Spinal cord modularity impacts on our understanding of reflexes, development, descending systems in normal motor control, and recovery from injury. We used independent component analysis and best-basis or matching pursuit wavepacket analysis to extract the composition and temporal structure of bursts in hindlimb muscles of frogs. These techniques make minimal a priori assumptions about drive and motor pattern structure. We compared premotor drive and burst structures in spinal frogs with less reduced frogs with a fuller repertoire of locomotory, kicking, and scratching behaviors. Six multimuscle drives explain most of the variance of motor patterns (∼80%). Each extracted drive was activated with pulses at a single time scale or common duration (∼275 msec) burst structure. The data show that complex behaviors in brainstem frogs arise as a result of focusing drives to smaller core groups of muscles. Brainstem drives were subsets of the muscle groups from spinal frogs. The 275 msec burst duration was preserved across all behaviors and was most precise in brainstem frogs. These data support a modular decomposition of frog behaviors into a small collection of unit burst generators and associated muscle drives in spinal cord. Our data also show that the modular organization of drives seen in isolated spinal cord is fine-tuned by descending controls to enable a fuller movement repertoire. The unit burst generators and their associated muscle synergies extracted here link the biomechanical “primitives,” described earlier in the frog, rat, and cat, and to the elements of pattern generation examined in fictive preparations.Keywords
This publication has 59 references indexed in Scilit:
- Temporal Components of the Motor Patterns Expressed by the Human Spinal Cord Reflect Foot KinematicsJournal of Neurophysiology, 2003
- Combinations of muscle synergies in the construction of a natural motor behaviorNature Neuroscience, 2003
- Neurobiological and neurorobotic approaches to control architectures for a humanoid motor systemRobotics and Autonomous Systems, 2001
- Conserved temporal dynamics and vector superposition of primitives in frog wiping reflexes during spontaneous extensor deletionsNeurocomputing, 2000
- Spinal Motor Patterns in the TurtleaAnnals of the New York Academy of Sciences, 1998
- An Information-Maximization Approach to Blind Separation and Blind DeconvolutionNeural Computation, 1995
- Matching pursuits with time-frequency dictionariesIEEE Transactions on Signal Processing, 1993
- Computations Underlying the Execution of Movement: A Biological PerspectiveScience, 1991
- Adaptability of innate motor patterns and motor control mechanismsBehavioral and Brain Sciences, 1986
- Control of Locomotion in Bipeds, Tetrapods, and FishPublished by American Geophysical Union (AGU) ,1981