A dramatic change in the rate-limiting step of β-lactam hydrolysis results from the substitution of the active-site serine residue by a cysteine in the class-C β-lactamase of Enterobacter cloacae 908R

Abstract
A cysteine residue has been substituted for the active-site serine of the class-C beta-lactamase produced by Enterobacter cloacae 908R by site-directed mutagenesis. The modified protein exhibited drastically reduced kcat./Km values on all tested substrates. However, this decrease was due to increased Km values with some substrates and to decreased kcat. values with others. These apparently contradictory results could be explained by a selective influence of the mutation on the first-order rate constant characteristic of the acylation step, a hypothesis which was confirmed by the absence of detectable acylenzyme accumulation with all the tested substrates, with the sole exception of cefoxitin.