Abstract
Physiological principles of motor control have generally been based on linear servocontrol theories in which transducers of force, length and velocity are used to provide feedback to the motor actuators. Within the past few years, recordings of the activity of motoneurones and proprioceptors during normal motor behaviour have indicated a diversity that is not consistent with any one theory of motor control. This paper examines the heterogeneity of kinematic conditions under which muscles are called on to perform, and attempts to correlate this with the effects of various fusimotor states on the activity of the muscle spindle afferents, the major sensory signal source in most feedback control schemes. The concept of ‘task groups’ is proposed, in which functional groups of alpha and gamma motoneurones and spindle afferents are programmed to achieve optimal control over relatively restricted but more linear parts of their operating curves. Such a functional compartmentalization of the motor apparatus is thus consistent with several different theories of servocontrol, although it remains unclear whether such conceptual mechanisms are actually embodied in the highly complex neural circuitry present in the spinal cord and higher motor centres.