Abstract
Red blood cells exposed to ouabain are capable of net Na outflux against an electrochemical gradient; the net outflux is inhibited by the diuretic, furosemide. In ouabain-treated cells, both the unidirectional Na outflux and the unidirectional Na influx are inhibited by furosemide. Furosemide also inhibits the ouabain-sensitive Na-Na exchange accomplished by the Na-K pump in K-free solutions. From the interaction of extracellular K, furosemide, and ouabain with the transport system, it seems possible that the ouabain-insensitive Na outflux is accomplished by the same mechanism that is responsible for the ouabain-sensitive Na-K exchange. The ouabain-insensitive Na outflux is increased by extracellular Na, and the influx increases as the intracellular Na increases. In fresh cells, high extracellular K concentrations decrease the ouabain-insensitive Na outflux and increase the ouabain-insensitive Na influx. When the rate constant for sodium outflux and the rate constant for sodium influx in ouabain-treated cells are plotted against the extracellular K concentration, the curves obtained are mirror images of each other. In starved cells, extracellular K increases the ouabain-insensitive Na outflux as does extracellular Na, and it has little effect on the Na influx.