Galectins, animal lectins exhibiting specificity for galactosides, are now known to be widely distributed from lower invertebrates, such as sponges and nematodes, to higher vertebrates. The origin of the family can be traced back to the Precambrian era. They are classified into proto-, chimera-, and tandem-repeat types on the basis of protein architecture. The molecular functions of these types should be different because they can cross-link pairs of biomolecules of different combinations. Their biological significance, however, is not yet fully understood because they are involved in too many phenomena, such as differentiation, morphogenesis, metastasis, etc., and too many problems remain unsolved, such as those regarding their controversial cellular localization, mechanism of externaliza-tion, etc. Nevertheless, such difficulties seem to indicate their importance as household equipment and their common roles throughout the animal kingdom. They are likely to be responsible for recognizing the N-acetyllactosamine (LacNAc) structure, which is included in various glycoconjugates and considered to be an important glycocode, and then carry out appropriate tasks under given circumstances. Recently, crystallographic studies revealed that galectins and legume lectins such as concanavalin A have a common topology in spite of the absence of sequence homology. This suggests a possible relationship between animal and plant lectins, and the existence of a lectin super family. Studies on the galectin family are becoming increasingly important for glycobiology.