Continuous Measurements of the Free Dissolved CO2 Concentration during Photosynthesis of Marine Plants

Abstract
An experimental system consisting of a gas exchange column linked to an assimilation chamber has been developed to record continuously the free dissolved CO2 concentration in seawater containing marine plants. From experiments performed on the red macroalga Chondrus crispus (Rhodophyta, Gigartinales), this measurement is in agreement with the free CO2 concentration calculated from the resistance to CO2 exchanges in a biphasic system (gas and liquid) as earlier reported. The response time of this apparatus is short enough to detect, in conditions of constant pH, a photosynthesis-caused gradient between free CO2 and HCO3 pools which half-equilibrates in 25 seconds. Abolished by carbonic anhydrase, the magnitude of this gradient increases with decreasing time of seawater transit from the chamber to the column apparatus. But its maximum magnitude (0.35 micromolar CO2) is negligible compared to the difference between air and free CO2 (11.4 micromolar CO2). This illustrates the extent of the physical limiting-step occurring at the air-water interface when inorganic carbon consumption in seawater is balanced by dissolving gaseous CO2. The direction of this small free CO2/HCO3 gradient indicates that HCO3 is consumed during photosynthesis.