Clifford Algebras and Dirac Operators in Harmonic Analysis

Abstract
The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here.