2',5'-Oligoadenylate:antisense chimeras. Synthesis and properties

Abstract
We have synthesized a novel bioconjugate which joins an antisense oligonucleotide to a unique and potent inhibitor of translation,pn5'A2'(p5'A2')mp5'A(2-5A). Two residues of 4-hydroxybutyl phosphate were employed as linkers to attach the 2',5'-oligoadenylate moiety through its 2'-terminus to the 5'-terminus of the chosen antisense sequence, (dT)20. The syntheses were carried on a solid support according to the phosphite triester method of DNA synthesis (Letsinger, R.L., Lunsford, W.B. (1976) J. Am. Chem. Soc. 98, 3655-3661; Beaucage, S.L., and Caruthers, M.H. (1981) Tetrahedron Lett. 22, 1859-1862). The generated 2-5A antisense chimeras retained both the ability of the 2-5A molecule to activate the 2-5A-dependent RNase as well as the ability of the oligo(dT) moiety to hybridize to the complementary poly(A). Moreover, the chimera, when annealed to its target nucleic acid sequence, was still effectively bound to the 2-5A-dependent nuclease. The methodology described represents a new approach to the selective modulation of mRNA expression.