Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing

Top Cited Papers
Open Access
Abstract
Atthe International Workshop on Genotoxicity Test Procedures (IWGTP) held in Washington, DC, March 25–26, 1999, an expert panel met to develop guidelines for the use of the single‐cell gel (SCG)/Comet assay in genetic toxicology. The expert panel reached a consensus that the optimal version of the Comet assay for identifying agents with genotoxic activity was the alkaline (pH > 13) version of the assay developed by Singh et al. [1988]. The pH > 13 version is capable of detecting DNA single‐strand breaks (SSB), alkali‐labile sites (ALS), DNA‐DNA/DNA‐protein cross‐linking, and SSB associated with incomplete excision repair sites. Relative to other genotoxicity tests, the advantages of the SCG assay include its demonstrated sensitivity for detecting low levels of DNA damage, the requirement for small numbers of cells per sample, its flexibility, its low costs, its ease of application, and the short time needed to complete a study. The expert panel decided that no single version of the alkaline (pH > 13) Comet assay was clearly superior. However, critical technical steps within the assay were discussed and guidelines developed for preparing slides with agarose gels, lysing cells to liberate DNA, exposing the liberated DNA to alkali to produce single‐stranded DNA and to express ALS as SSB, electrophoresing the DNA using pH > 13 alkaline conditions, alkali neutralization, DNA staining, comet visualization, and data collection. Based on the current state of knowledge, the expert panel developed guidelines for conducting in vitro or in vivo Comet assays. The goal of the expert panel was to identify minimal standards for obtaining reproducible and reliable Comet data deemed suitable for regulatory submission. The expert panel used the current Organization for Economic Co‐operation and Development (OECD) guidelines for in vitro and in vivo genetic toxicological studies as guides during the development of the corresponding in vitro and in vivo SCG assay guidelines. Guideline topics considered included initial considerations, principles of the test method, description of the test method, procedure, results, data analysis and reporting. Special consideration was given by the expert panel to the potential adverse effect of DNA degradation associated with cytotoxicity on the interpretation of Comet assay results. The expert panel also discussed related SCG methodologies that might be useful in the interpretation of positive Comet data. The related methodologies discussed included: (1) the use of different pH conditions during electrophoreses to discriminate between DNA strand breaks and ALS; (2) the use of repair enzymes or antibodies to detect specific classes of DNA damage; (3) the use of a neutral diffusion assay to identify apoptotic/necrotic cells; and (4) the use of the acellular SCG assay to evaluate the ability of a test substance to interact directly with DNA. The alkaline (pH > 13) Comet assay guidelines developed by the expert panel represent a work in progress. Additional information is needed before the assay can be critically evaluated for its utility in genetic toxicology. The information needed includes comprehensive data on the different sources of variability (e.g., cell to cell, gel to gel, run to run, culture to culture, animal to animal, experiment to experiment) intrinsic to the alkaline (pH > 3) SCG assay, the generation of a large database based on in vitro and in vivo testing using these guidelines, and the results of appropriately designed multilaboratory international validation studies. Environ. Mol. Mutagen. 35:206–221, 2000