Patterns of Positive Selection in Six Mammalian Genomes
Top Cited Papers
Open Access
- 1 August 2008
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Genetics
- Vol. 4 (8), e1000144
- https://doi.org/10.1371/journal.pgen.1000144
Abstract
Genome-wide scans for positively selected genes (PSGs) in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small numbers of available genomes. Here we present the most comprehensive examination of mammalian PSGs to date, using the six high-coverage genome assemblies now available for eutherian mammals. The increased phylogenetic depth of this dataset results in substantially improved statistical power, and permits several new lineage- and clade-specific tests to be applied. Of ∼16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR<0.05), according to a standard likelihood ratio test. An additional 144 genes showed evidence of positive selection on particular lineages or clades. As in previous studies, the identified PSGs were enriched for roles in defense/immunity, chemosensory perception, and reproduction, but enrichments were also evident for more specific functions, such as complement-mediated immunity and taste perception. Several pathways were strongly enriched for PSGs, suggesting possible co-evolution of interacting genes. A novel Bayesian analysis of the possible “selection histories” of each gene indicated that most PSGs have switched multiple times between positive selection and nonselection, suggesting that positive selection is often episodic. A detailed analysis of Affymetrix exon array data indicated that PSGs are expressed at significantly lower levels, and in a more tissue-specific manner, than non-PSGs. Genes that are specifically expressed in the spleen, testes, liver, and breast are significantly enriched for PSGs, but no evidence was found for an enrichment for PSGs among brain-specific genes. This study provides additional evidence for widespread positive selection in mammalian evolution and new genome-wide insights into the functional implications of positive selection. Populations evolve as mutations arise in individual organisms and, through hereditary transmission, gradually become “fixed” (shared by all individuals) in the population. Many mutations have essentially no effect on organismal fitness and can become fixed only by the stochastic process of neutral drift. However, some mutations produce a selective advantage that boosts their chances of reaching fixation. Genes in which new mutations tend to be beneficial, rather than neutral or deleterious, tend to evolve rapidly and are said to be under positive selection. Genes involved in immunity and defense are a well-known example; rapid evolution in these genes presumably occurs because new mutations help organisms to prevail in evolutionary “arms races” with pathogens. Many mammalian genes show evidence of positive selection, but open questions remain about the overall impact of positive selection in mammals. For example, which key differences between species can be attributed to positive selection? How have patterns of selection changed across the mammalian phylogeny? What are the effects of population size and gene expression patterns on positive selection? Here we attempt to shed light on these and other questions in a comprehensive study of ∼16,500 genes in six mammalian genomes.Keywords
This publication has 91 references indexed in Scilit:
- Evolution of protein-coding genes in DrosophilaTrends in Genetics, 2008
- Evolution of genes and genomes on the Drosophila phylogenyNature, 2007
- Diet and the evolution of human amylase gene copy number variationNature Genetics, 2007
- Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolutionNature Genetics, 2007
- The evolution and genomic landscape of CGB1 and CGB2 genesMolecular and Cellular Endocrinology, 2006
- Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle diseaseNature Genetics, 2006
- A haplotype map of the human genomeNature, 2005
- Genome sequence of the Brown Norway rat yields insights into mammalian evolutionNature, 2004
- Initial sequencing and comparative analysis of the mouse genomeNature, 2002
- Initial sequencing and analysis of the human genomeNature, 2001