Persistent Current in Superconducting Nanorings

Abstract
The superconductivity in very thin rings is suppressed by quantum phase slips. As a result, the amplitude of the persistent current oscillations with flux becomes exponentially small, and their shape changes from sawtooth to a sinusoidal one. We reduce the problem of low-energy properties of a superconducting nanoring to that of a quantum particle in a sinusoidal potential and show that the dependence of the current on the flux belongs to a one-parameter family of functions obtained by solving the respective Schrödinger equation with twisted boundary conditions.
All Related Versions