Abstract
Solutions of ionic polyacrylamide polymers behave pseudoplastic in purely viscometric flow. Flow rate, polymer molecular weight and electrolytes affect solution viscosities to a large extent. Equations are given for the viscosity-shear rate relations in a form that can be used conveniently to account for the effect of viscosity on mobility. Introduction: Polymers are being used increasingly in oil recovery operations, and therefore, an understanding of their flow behavior is gaining pragmatic importance. Past studies have shown that in the flow of polymeric fluids through porous media, the increase in solution viscosity, decrease in permeability, and viscoelastic deformations cause permeability, and viscoelastic deformations cause the fluid mobility to be greatly reduced. In general, viscoelasticity, i.e., extensional flow, is not so important because, for the largest part of a reservoir, polymer solution moves at very low and fairly steady polymer solution moves at very low and fairly steady velocities. Jennings et al. have concluded this for the specific polymers that they studied. Permeability reduction plays an important role in Permeability reduction plays an important role in the mobility control, particularly in porous media having low permeabilities initially. Reductions ranging from 25 to 70 times have been reported. However, the alterations that take place in a porous medium during polymer flow, the coupling between the geometry of the porous medium and the properties of the flowing fluid, and the influence of the flow regime on permeability have not been looked into in sufficient detail. A separate study, directed to the understanding of these important phenomena is required. In the present work, the purely viscous behavior of solutions of three partially hydrolized polyacrylamide polymers was obtained under experimental conditions far polymers was obtained under experimental conditions far more extensive than any reported in the literature. Some data have been available in the past for two of the polymers, but the third is a new polymer for which no data have been reported before. Using a Weissenberg rheogoniometer, Cannon-Fenske viscometers, and various capillary cubes, viscosities were measured over 8 decades of shear rate, ranging from 10 to to 10 (5) sec-1. These are the limits of measurable rates of shear and cover those that may apply to flow in reservoirs. Distilled water and various NaCl solutions were used as solvents to afford comparison of the rheological properties between fresh and saline solutions. Measurements were also made with solutions containing calcium' and magnesium to study the effect of divalent cations.